If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3v^2+28v=49=0
We move all terms to the left:
3v^2+28v-(49)=0
a = 3; b = 28; c = -49;
Δ = b2-4ac
Δ = 282-4·3·(-49)
Δ = 1372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1372}=\sqrt{196*7}=\sqrt{196}*\sqrt{7}=14\sqrt{7}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-14\sqrt{7}}{2*3}=\frac{-28-14\sqrt{7}}{6} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+14\sqrt{7}}{2*3}=\frac{-28+14\sqrt{7}}{6} $
| 11w-3w=63 | | ((2x-1)^3/2)-((2(2x-1)^1/2)=0 | | Xx1.5=7.5 | | 5/7x+18/7=1/7 | | 5/7x+18/7=1 | | ((2x-1)^3/2)-2(2x-1)^1/2=0 | | 5/7x+18/7=7 | | 2k^2+13k-14=0 | | 2k-5k=3(-2k) | | m^2-2m+0=0 | | y/(-4)+(-8)=1 | | n/9+-7=0 | | m/5-(-6)=-1 | | t/(-3)-2=-4 | | 2r-(-6)=-4 | | -24=x-16 | | y/(-6)-3=4 | | m/(-4)-3=-4 | | 6.9=7/x | | x+(2x+1)+(3x-2)=35 | | n/(-2)+7=8 | | -8x+10+14x-16+24x-10=-18x+14x+16 | | n/7+-5=0 | | s/(7)=27 | | y/(-4)-2=10 | | 2*5/7+b=4 | | 3/2x-10=50 | | 85x=(85-x)(x+17) | | 3/2x-20=50 | | m/3+7=5 | | -5t+10=15 | | 5y=2y+y=22 |